{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 706
{-# LANGUAGE PolyKinds #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE Safe #-}
#elif __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
module Data.Bifunctor.Tannen
( Tannen(..)
) where
import Control.Applicative
import Control.Arrow as A
import Control.Category
import Control.Comonad
import Data.Bifunctor as B
import Data.Bifunctor.Functor
import Data.Biapplicative
import Data.Bifoldable
import Data.Bitraversable
#if __GLASGOW_HASKELL__ < 710
import Data.Foldable
import Data.Monoid
import Data.Traversable
#endif
#if __GLASGOW_HASKELL__ >= 708
import Data.Typeable
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics
#endif
import Prelude hiding ((.),id)
newtype Tannen f p a b = Tannen { runTannen :: f (p a b) }
deriving ( Eq, Ord, Show, Read
#if __GLASGOW_HASKELL__ >= 702
, Generic
#endif
#if __GLASGOW_HASKELL__ >= 708
, Typeable
#endif
)
#if __GLASGOW_HASKELL__ >= 702
# if __GLASGOW_HASKELL__ >= 708
deriving instance Functor f => Generic1 (Tannen f p a)
# else
data TannenMetaData
data TannenMetaCons
data TannenMetaSel
instance Datatype TannenMetaData where
datatypeName _ = "Tannen"
moduleName _ = "Data.Bifunctor.Tannen"
instance Constructor TannenMetaCons where
conName _ = "Tannen"
conIsRecord _ = True
instance Selector TannenMetaSel where
selName _ = "runTannen"
instance Functor f => Generic1 (Tannen f p a) where
type Rep1 (Tannen f p a) = D1 TannenMetaData (C1 TannenMetaCons
(S1 TannenMetaSel (f :.: Rec1 (p a))))
from1 = M1 . M1 . M1 . Comp1 . fmap Rec1 . runTannen
to1 = Tannen . fmap unRec1 . unComp1 . unM1 . unM1 . unM1
# endif
#endif
instance Functor f => BifunctorFunctor (Tannen f) where
bifmap f (Tannen fp) = Tannen (fmap f fp)
instance (Functor f, Monad f) => BifunctorMonad (Tannen f) where
bireturn = Tannen . return
bibind f (Tannen fp) = Tannen $ fp >>= runTannen . f
instance Comonad f => BifunctorComonad (Tannen f) where
biextract = extract . runTannen
biextend f (Tannen fp) = Tannen (extend (f . Tannen) fp)
instance (Functor f, Bifunctor p) => Bifunctor (Tannen f p) where
first f = Tannen . fmap (B.first f) . runTannen
{-# INLINE first #-}
second f = Tannen . fmap (B.second f) . runTannen
{-# INLINE second #-}
bimap f g = Tannen . fmap (bimap f g) . runTannen
{-# INLINE bimap #-}
instance (Functor f, Bifunctor p) => Functor (Tannen f p a) where
fmap f = Tannen . fmap (B.second f) . runTannen
{-# INLINE fmap #-}
instance (Applicative f, Biapplicative p) => Biapplicative (Tannen f p) where
bipure a b = Tannen (pure (bipure a b))
{-# INLINE bipure #-}
Tannen fg <<*>> Tannen xy = Tannen ((<<*>>) <$> fg <*> xy)
{-# INLINE (<<*>>) #-}
instance (Foldable f, Bifoldable p) => Foldable (Tannen f p a) where
foldMap f = foldMap (bifoldMap (const mempty) f) . runTannen
{-# INLINE foldMap #-}
instance (Foldable f, Bifoldable p) => Bifoldable (Tannen f p) where
bifoldMap f g = foldMap (bifoldMap f g) . runTannen
{-# INLINE bifoldMap #-}
instance (Traversable f, Bitraversable p) => Traversable (Tannen f p a) where
traverse f = fmap Tannen . traverse (bitraverse pure f) . runTannen
{-# INLINE traverse #-}
instance (Traversable f, Bitraversable p) => Bitraversable (Tannen f p) where
bitraverse f g = fmap Tannen . traverse (bitraverse f g) . runTannen
{-# INLINE bitraverse #-}
instance (Applicative f, Category p) => Category (Tannen f p) where
id = Tannen $ pure id
Tannen fpbc . Tannen fpab = Tannen $ liftA2 (.) fpbc fpab
instance (Applicative f, Arrow p) => Arrow (Tannen f p) where
arr f = Tannen $ pure $ arr f
first = Tannen . fmap A.first . runTannen
second = Tannen . fmap A.second . runTannen
Tannen ab *** Tannen cd = Tannen $ liftA2 (***) ab cd
Tannen ab &&& Tannen ac = Tannen $ liftA2 (&&&) ab ac
instance (Applicative f, ArrowChoice p) => ArrowChoice (Tannen f p) where
left = Tannen . fmap left . runTannen
right = Tannen . fmap right . runTannen
Tannen ab +++ Tannen cd = Tannen $ liftA2 (+++) ab cd
Tannen ac ||| Tannen bc = Tannen $ liftA2 (|||) ac bc
instance (Applicative f, ArrowLoop p) => ArrowLoop (Tannen f p) where
loop = Tannen . fmap loop . runTannen
instance (Applicative f, ArrowZero p) => ArrowZero (Tannen f p) where
zeroArrow = Tannen $ pure zeroArrow
instance (Applicative f, ArrowPlus p) => ArrowPlus (Tannen f p) where
Tannen f <+> Tannen g = Tannen (liftA2 (<+>) f g)